344 research outputs found

    Nucleotide Sequence of a cDNA for the Maize Protein Synthesis Initiation Factor 4A

    Full text link

    PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat

    Get PDF
    PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops

    Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress

    Get PDF
    Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops

    Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival

    Get PDF
    Successful emergence from the soil is essential for plant establishment in natural and farmed systems. It has been assumed that the absence of light in the soil is the preeminent signal perceived during early seedling development, leading to a distinct morphogenic plan (skotomorphogenesis) [1], characterized by traits providing an adaptive advantage until emergence and photomorphogenesis. These traits include suppressed chlorophyll synthesis, promotion of hypocotyl elongation, and formation of a closed apical hook that protects the stem cell niche from damage [2, 3]. However, absence of light by itself is not a sufficient environmental signal for early seedling development [4, 5]. Reduced oxygen levels (hypoxia) can occur in water-logged soils [6-8]. We therefore hypothesized that below-ground hypoxia may be an important, but thus far undiscovered, ecological component regulating seedling development. Here, we show that survival and establishment of seedlings following darkness depend on their ability to sense hypoxia, through enhanced stability of group VII Ethylene Response Factor (ERFVII) transcription factors. Hypoxia is perceived as a positive environmental component in diverse taxa of flowering plants, promoting maintenance of skotomorphogenic traits. Hypoxia greatly enhances survival once light is perceived, while oxygen is necessary for the subsequent effective completion of photomorphogenesis. Together with light perception, oxygen sensing therefore allows an integrated response to the complex and changing physical microenvironment encountered during early seedling growth. We propose that plants monitor the soil's gaseous environment after germination, using hypoxia as a key external cue to protect the stem cell niche, thus ensuring successful rapid establishment upon emergence above ground

    First hints of new sensors

    Get PDF
    A mechanism by which plants detect and respond to oxygen starvation has been known for some years. Three recent papers suggest that we haven’t been seeing the full picture

    Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration

    Get PDF
    Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia surviva
    corecore